Sunday, 13 December 2009

The Origins of Ombilin River and Singkarak Lake, Folklore From West Sumatra | Socyberty

The Origins of Ombilin River and Singkarak Lake, Folklore From West Sumatra | Socyberty
Kisah ini saya tulis untuk mempopulerkan cerita rakyat Indonesia. Untuk teman-temanku semoga berkenan dengan kisah tersebut dan dapat memberi masukan untuk tulisan saya selanjutnya. Terima kasih.

Posted using ShareThis

Friday, 13 November 2009

Perancangan Simulasi Berbasis Agen untuk Menganalisis Strategi pada Sebuah Sekolah

English Title: Design of Agent Based Simulation to Analyze School's Strategy
Author: Dhanan Sarwo Utomo
Published : Jurnal Pendidikan Inovatif Vol.4 No.1 September 2008

Abstract: School is an organization, which has certain goals to be achieved. Correct strategy analysis is essential in order to achieve these goals successfully. Interaction exists among students, teachers, parents and school managers within school organization. Each elements of this interaction have different goals and strategy to achieve their individual goals. Using hypothetical data we construct an agent based computer simulation to analyze interaction within school organization. Using this simulation, determine several scenarios that can optimize the outcome of school strategy.

Abstrak : Sekolah sebagai sebuah organisasi memiliki sejumlah tujuan yang ingin dicapai, salah satunya adalah tujuan pendidikan nasional. Oleh karena itu, pemilihan strategi yang tepat amat penting dalam kesuksesan pencapaian tujuan-tujuan sekolah. Dalam pendidikan, strategi ini umumnya dikemas dalam bentuk kegiatan siswa, kegiatan guru, peraturan sekolah, maupun metode belajar. Dalam organisasi sekolah juga terjadi interaksi antara siswa, guru, orang tua, dan pengelola sekolah. Hasil dari proses interaksi antarindividu akan mempengaruhi hasil dari pencapaian strategi sekolah secara keseluruhan. Interaksi antarindividu (agen) adalah fenomena yang kompleks karena tiap agen adalah manusia yang memiliki tujuan, nilai, strategi, karakteristik, dan emosi masing-masing.

Wednesday, 22 July 2009

Literature Review Agent-Based Simulation "On generating hyphoteses using computer simulation"

Conclusions that i get after I read article entitled "On generating hypotheses using computer simulation" by Kathleen M. Carley that was published in the Proceeding of the 1999 International symposium on commend and control research and technology.

What is the use of computer simulation?
  • Computer simulation can be used to develop the theory and generating hypotheses

Why computer simulation is important to generate a hypothesis?
  • Because, social interactions are dynamic, adaptive and non linear.
  • As an example of non-linearity is, the declining ability of an information to shift agent’s perception.
  • As the number of information that support an idea believed by an agent increase, the impact of dis-confirming information decrease.
  • Such non linearity will bring difficulties for the researchers to infer the impact of a learning process, adaptation and agent's response, especially in a dynamic environment.
  • Computer simulation can help researchers to think about the impact of such non linearity and to generate a number of consistent hypotheses.
  • To generate hypotheses using agent based simulation, researchers can conduct virtual experiment.
  • Obtained hypotheses then can be tested through experiment in the real world.

Steps to conduct good virtual experiment
  • Identify core variables: Core variables are parameters that are assumed to be the most relevant variables affecting the dependent.
  • Define the range of parameters that are going to be explored.
  • Set the non-core variables as random numbers or according to the real world data.
  • Run the simulation multiple times for each experiment set. Ideally researchers could obtain much larger data than, that can be obtained in real world experiment.
  • Analyze the result of simulation statistically.
What are the advantages of agent based simulation compare to the human laboratory experiment?
  • Using agent based simulation, researcher can explore range of parameters and type process that are impossible to be explored in the real world.
  • These impossibilities can be caused by the high amount of cost or by the ethical issues.

Monday, 20 July 2009

Literature Review Agent-Based Simulation "What is the truth of Simulation?"

Conclusions that i get after I read article entitled "What is the truth of simulation?" by Alex Schmid that was published in Journal of Artificial Societies and Social Simulation Vol.8, no. 4 (2005)

What is validation?

Validation is a process to determine the sufficient accuracy to which a model or simulation is a representation of the real world system from the perspective of its specific purpose.

There are two key components of validation process:
  • Model’s accuracy that is measured with scale from 0 to 100%
  • Model’s validity mean whether a simulation model is true or not to in the perspective of its specific purpose.
In order to deeply discuss the validation concept of a simulation model according to the scientific framework, it would be appropriate to first discuss the philosophical concepts of truth.

Are simulation truths worthy?
What is truth worthy?
  • Philosophically an object classified as truth worthy object if that object can be judged as true or false.
  • Traditionally, linguistic object such as statements and judgment are the main objects of truth.
  • If we can accept mathematics as foundation of simulation as a language, and the communicative aspects of a simulation of the model then, simulation model it is a truth worthy object.

There are some appropriate criteria of truth that can be applied to a simulation model.

1) Correspondence theory of truth:
  • A statement is considered true when it has a correspondence with a fact in the real world.
  • A simulation can be considered as true if its components refer to the facts in the real world.
  • Correspondence theory of truth can be useful in judging the accuracy of simulation model.

2) Consensus theory of truth:
  • A simulation considered as true according to the consensus theory of truth if it can be rationally accepted in an ideal or optimal condition.
  • Whether a simulation model is correct or wrong will depend on whether the structure of the simulation can be accepted or not by others who think rationally.
  • Consensus theory of truth can be useful in judging the validity of simulation model.
3) Coherence theory of truth:
  • A simulation model can be considered as true according to the Coherence theory of truth if its components have a root to the branch scientific disciplines that is believed to be true.
  • Coherence theory of truth can be useful in judging the validity of simulation model.

Thursday, 9 July 2009

Literature Review Agent Based Simulation "Why Model?"

Summary results of the work of Joshua M. Epstein article entitled "Why Model?" that was published in Journal of Artificial Societies and Social Simulation 11, no. 4 (2008)

  • Basically, any researcher who tries to make a projection or imagining a social dynamics is running a model.
  • The most important thing for a researcher is, whether he is able to make an explicit model or not?.
  • In an explicit model, all the assumptions used are clearly specified, so that their impact can be tested.
  • By creating an explicit model, we can combine expertise from various fields such as Biomedical and ethnographic.
  • Parameters in an explicit model that can be calibrated with the historical data and, its behavior can be tested with the present data.
  • In an explicit model, sensitivity analysis can be done by, sweeping huge range of parameters over vast range of possible scenarios.
  • By running a sensitivity analysis, researchers will be able to identify uncertainty, region of robustness, and important threshold.
  • A model should not always able to predict.
  • However, the ability of a model to uncover trade off, sensitivity and uncertainty can guide the decision making process.
1) Explanation
  • For example, the electrostatic model can explain how a lightning occur, however, it cannot predict when and where the lightning will appear.
  • A simulation model can explain the emergence of a pattern caused by interactions of a number of agents.
  • This kind of explanation is called generative explanation.
2) To guide data collection
  • Many researchers have been wrongly applied the inductive method by gathering as many data as possible then run regression on it.
  • A model is used only as a calculation tool of data.
  • In fact, to process data with a model, a number of assumptions must be fulfilled.
  • For example, the existence of radio waves were first detected through the Maxwell equation, after that the supporting data observed.
  • Without able to specify the assumptions used in a model, researchers are not always clear which type of data should be collected.
3) Illuminate core dynamics
  • A model can be used to clarify an abstraction, and strengthen human basic intuition .
  • Thus, although the model contains a simplification, the model still can be useful.
4) Suggest Analogies
  • A number of varieties of processes that does not seem related can have the same formal form.
  • For example, the algebraic form of Coulomb law is identical to the Newton's law of gravity.
  • By creating a model, we can make an analogy of a process by the other process and compare the behavior of both processes.
  • If the behavior of analogical model is similar to the behavior of the target process then, there is possibility that laws and theories in the analogical can also be applied the target process.
5) Rise new question: models can surprise us and increase our curiosity, and lead to new question.

Friday, 3 July 2009

Literature Review Agent Based Simulation "The Bigger Picture"

Summary results of the work of Tamas Viscek article entitled "The Bigger Picture" that was published in Nature Vol.418 11 July 2002 pp: 131

  • A complex system is a system that, its overall behavior requires different theoretical explanations from the theoretical explanations that are used to explain the behavior of its sub-system
  • Each level in the complex system, regulated by different laws
  • Both deterministic and random features, owned simultaneously by a complex system
  • A complex system has chaotic behaviors. The system can show a regular behavior however, may change dramatically and stochastically in space and time due to small changes in the initial condition
  • Because, the universe is consisting of many components at various levels, these components are connected and interact with each other.
  • Interaction between components that occur at each level, produce a behavior that requires different interpretation of the results of interaction on the other levels.
  • Behavior of the whole system, emerge as a result of the interaction among components in same the level and among components on different levels
  • Complexity science is a field that studied the process of behaviors formation of a system.

  • Traditionally, human try to understand the nature using reductionism perspective (through simplification and analysis)
  • Reductionism has a weakness because, ignoring a number of factors that works simultaneously, if their impacts are considered not significant
  • Complexity science considers all processes that occur simultaneously on different levels important
  • Behavior of the system as a whole will depend on the results of these processes in a non-trivial way
  • By creating a model of a system researchers can understand and manipulate the behavior of the system as a whole.
  • Computer simulation is a tool that can improve our insight about the mechanisms that occur in a complex system.

Monday, 8 June 2009

Using Agent Based Modeling To Determine High School Students' Selection System In Bandung, Indonesia

Author:Dhanan Sarwo Utomo, Utomo Sarjono Putro, Santi Novani, Manahan Siallagan
Published: Proceeding PAN-PACIFIC CONFERENCE XXVI June 1-3 2009, Shenzhen, China


As an impact of the implementation of Indonesian Republic Law No.32 2004, each local government have an obligation to design suitable education policy for their region. One of the obligation that should be met is to design a high school student selection system that is suitable to be implemented in their region. Unfortunately, student selection system that are currently implemented still cannot produce the expected result. We construct a agent-based model that mimic the student selection process in Bandung. By conducting experiments using this model, the limitations of current student selection system are identified and modification is suggested. By observing agent’s success rate in this model, we also able to identify the best strategy for agent in order to qualified in the school of their choice under different kind of system.

Monday, 11 May 2009

Exercise 9.45 Business Statistics

The following is my answer to the problem 9.45 page 290 from the book "Business Statistics A First Course" by David M. Levine, Timothy C. Krehbiel and Mark L. Berenson

The Problem
You are the manager of a restaurant that delivers pizza to college dormitory rooms. You have just changed your delivery process in an effort to reduce the mean time between the order and completion of delivery from the current 25 minutes. From past experience, you can assume that the population standard deviation is 6 minutes. A sample of 16 orders using the new delivery process yields a sample mean of 22.4 minutes.

A) At the 0.05 level of significance, is there evidence that the mean delivery time has been reduced below the previous population mean value of 25 minutes?

Z critical value from the table for α=0.05 is -1.64; -1.73 < -1.64 so the null hypothesis is rejected.
There is evidence that the mean delivery time is less than 25 minutes.

Exercise 9.29 Business Statistics

The following is my answer to the problem 9.29 page 285 from the book "Business Statistics A First Course" by David M. Levine, Timothy C. Krehbiel and Mark L. Berenson

The Problem
The manager of a plant supply store wants to determine whether the mean amount of paint contained in 1 gallon cans purchased from a nationally known manufacturer is actually 1 gallon. You know from the manufacturer’s specifications that the standard deviation of the amount of paint is 0.02 gallon. You select a random sample of 50 cans, and the mean amount of paint per 1-gallon can is 0.995 gallon.

A) Is there evidence that the mean amount is different from 1.0 gallon (use α=0.01). Answer

Z critical value from the table for α/2=0.005 is -2.58 ; -352.558 < -2.58 so the null hypothesis is rejected.
There is evidence that the mean amount is different from 1 gallon

C) Construct a 99% confidence interval estimate of the population mean a,punt of paint. Answer

Tuesday, 5 May 2009

Exercise 2.3 Interactive Decision Making

The following article is my answer to the problem 2.3 page 40 from the book "Interactive Decision Making" by Liping Fang, Keith Hipel and Marc Kilgour.

The Problem
An important 2x2 game that has been extensively studied for obtaining insight into human behavior in conflict situation is called prisoner's dilemma (see, for example Rapoport, Guyer and Gordon, 1976). In this game, two people suspected of being partners in a crime are arrested and placed in separate cells so that they cannot communicate with one another. The district attorney does not have sufficient evidence to convict them for the crime. Consequently, to obtain a confession the attorney presents each suspect with the following offer:
  • If one of them confess and the other does not, the one who confess can go free for cooperating with the state, while the other get a stiff 10 year sentence.
  • If both prisoners confess, both get reduced sentences of five years.
  • If both suspect keep silent, both go to prison for one year of lesser charge of carrying weapon.
Assuming ordinal preferences, model prisoner's dilemma using the three type of abstract game model mentioned below:

A) Normal form. Answer:

Prisoner 2
Confess Not Confess
Prisoner 1 Confess (2,2) (4,1)
Not Confess (1,4) (3,3)

B) Option form. Answer:


1 2 3 4
Prisoner 1

Confess Y Y N N
Prisoner 2

Confess Y N Y N
Normal form notation (CC) (CN) (NC) (NN)

Preferences Vectors
Prisoner 1 Y N Y N

Prisoner 2 N N Y Y

C) Graph model for conflict resolution. For each decision maker, be sure to give the graph, payoff function, reachable matrix, and reachable list.

Prisoner 1

P1 = (2,4,1,3)

Prisoner 2

P2 = (2,1,4,3)

Reachable List
Initial State Prisoner 1 Prisoner 2
1 3 2
2 4 1
3 1 4
4 2 3

Please let me know in case i have made some mistakes :)

Wednesday, 7 January 2009

Cognitive Bias in Decision Making

This article describe 13 kind of cognitive biases that usually occur in decision making process. These biases are caused by heuristic methods (simplified method, short cut), which are commonly used by decision maker to make daily decision.

Keyword: decision making bias, heuristic methods


Thursday, 1 January 2009


Author: Dhanan Sarwo Utomo
Educare Vol.6 No.1, Agust 1st 2008

School is an organization which has certain goals that want to be achieved. Appropriate strategy analysis is essential in order to achieve these goals successfully. Interaction exists among students, teachers, parents and school managers within school organization. Each elements of this interaction have different goals and strategy to achieve their individual goals. The result of this interaction will affect the overall outcome of school’s strategy. Using hypothetical data we construct an agent based computer simulation to analyze interaction within school organization. Based on our simulation we analyze the effect of teacher’s performance standard and the interval of teacher evaluation toward teacher’s motivation and knowledge. As a result, we purpose several scenarios that can optimize teacher’s motivation and knowledge.

Key Words: strategy analysis, school strategy, agent based simulation.
Read More >>>

Managing Collaboration Using Agent Based Simulation

Author:Utomo Sarjono Putro, Manahan Siallagan, Santi Novani, Dhanan Sarwo Utomo
Publication: Proceeding PRIMA 2008: 348-356

The purpose of the present research is to identify, analyze and simulate dynamics of interaction and conflicts among agents using drama theory, and to apply it in Citarum river basin problem. To accomplish the purpose, we first model the process in terms of drama theory that is combined with emotional state model (PAD). One of the reasons why we adopt drama theory is that it primarily focuses on dilemma or paradox arising from rational goal seeking behavior. It also provides us with rigorous analytical and computational tools of conflict analysis. Then, we propose a simulation model to describe both of dilemma of conflict, i.e., persuasion and rejection dilemma among the agents, and the dilemma of collaboration (trust dilemma) among the agents. Finally, we conduct agent-based simulation by using SOARS (Spot Oriented Agent Role Simulator) to obtain some fruitful suggestions for encouraging their collaboration.

Keywords: Agent based Simulation, Negotiation, Dilemma, Drama Theory, Emotion.
Read More >>>